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1 INTRODUCTION

The choice of representation for circuits and boolean formulae in a formal verification sce-
nario is important. This is mainly attributed to the goal to keep memory consumption low
by making use of compact representations. Also, many formal verification algorithms are
sensitive to the redundancies in the design that is processed. To address these concerns
we try to use various compression techniques. And-inverter graph rewriting is focused
in this direction. And-inverter graph (AIG) is a directed, acyclic graph. It is one way to
represent the logic functionality of a circuit or network. AIG consists of 2-input nodes
representing logical conjunction, terminal nodes labeled with variable names, and edges
optionally containing markers indicating logical negation. It is an efficient representation
for manipulation of Boolean functions. AIGs can be small compared to Conjunctive Nor-
mal Form(CNF) representation. Some circuits that are linear in AIGs are exponential in
CNF. We studied another form of representing logic functionalities of a network in class,
viz. Binary Decision Diagrams (BDD). Conversion from a network of logic gates to AIGs
is fast and scalable. It only requires every gate be expressed in terms of AND gates and
inverters. Below is an illustration of how a circuit can be converted to an And-inverter
graph.

Fig. 1. Constructing And-inverter graphs
AIGs don’t have a canonical representation like BDDs. This is the reason that makes

AIG an efficient representation in comparison with BDDs with loss of canonicity. Also,
techniques like rewriting can be applied to AIGs unlike BDDs for the same reason that
they are not canonical.

AIG rewriting is an optimization technique that is alternated to reduce area by sharing
common logic without increasing delay. It is an innovative technique for combinational logic
synthesis. My work is centered around implementing the DAG-Aware Rewriting algorithm
proposed by Berkeley Logic Synthesis and Verification Group in [6]. It has been further
showed in [6] that this methodology scales to very large designs and is several orders of
magnitude faster than logic synthesis tools like SIS and MVSIS without compromising the
quality of the network after mapping.

2 AIG REWRITING

Rewriting is a fast greedy algorithm for minimizing the AIG size by iteratively selecting
AIG subgraphs rooted at node and replacing them with smaller pre-computed subgraphs.
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During the construction of the And-inverter graph, each vertex is entered into a hash table
using the vertices of the two input operands and their polarities as key. Identical vertex
keys are a sufficient condition for structural equivalence. The hash table can thus be
used during the graph construction to map isomorphic parts of the two circuits onto the
same subgraph. For example, when the functions ab and āb̄ are present in a circuit, they
are identified as structurally equivalent because of modulo inversion and mapped to the
same vertex in the graph model. I have worked with AIGs making extensive use of the
AIGER library. The input and output And-inverter graphs were taken in AIGER format as
described in [1] and [4]. I have run the AIG rewriting implementation against some of the
benchmarks written for the new AIGER format and presented the results.

3 BOOLEAN NETWORKS

A Logic Network is a directed acyclic graph.

Fig. 2. Logic Network
Each node has only one output. A node can have any number of inputs (fanins) and

can be input to any number of nodes (fanouts)

Fig. 3. Node, Fanin and Fanout
Transitive fanin or transitive fanout means, there is either a direct or indirect connection

between the gates.
Cut:
A cut of a node n is a set of nodes(leaves) in transitive fan-in such that every path from

the node to PIs is blocked by nodes (at least one leaf) in the cut.
A k-feasible cut means the size of the cut must be k or less.
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Fig. 4. The set of leaves {p, b, c} is a 3-feasible cut of the node r. It is also a 4-feasible
cut.

As a side note to this information k-feasible cuts are important in technology mapping
(especially FPGA mapping) since the logic between a node and the nodes in its cut can
be replaced by a k-LUT(look up table).

k-feasible cut computation:

Fig. 5. k-feasible cut computation
Note that any cut that is of size greater than k is discarded. The cut function is the

function of node n in terms of the cut leaves.
The fact that many different 2-input functions may have same gate level implementation

gives rise to the idea of equivalence. P equivalence between two functions is obtained
when it is possible to achieve identical values for both truth table outputs by permuting the
function inputs. Functions that are P equivalent can be grouped into P classes. The most
important property of P equivalent functions is that they can always be implemented with
the same cell from a library (circuit). If we look further in this direction, it is possible to see
that even P classes may have similar implementations. These functions may be grouped
into NPN equivalence class.

NPN equivalence:
Two Boolean functions, F and G belong to same NPN-class (are NPN-equivalent) if

F can be derived from G by negating (N) and permuting (P) inputs and negating (N) the
output.

For example, F = ab + c and G = ac + b are NPN-equivalent because swapping b
and c make them identical. Functions F = ab + c and G = ab are not NPN-equivalent
because no amount of permuting and complementing variables can make a 3-variable

5



function equivalent to a 2-variable function.
If there are n variables, there are 2n combinations, let us say there are 2 variables, we

have 4 combinations. Each of these combinations can be true or false, i.e. for n variables
there are 22n boolean functions possible. We note that here in spite of existence of 16
different two-input functions, there are only 4 different 2-input NPN classes. There are two
NPN classes composed of 2 functions, one NPN class composed of 4 functions, and one
NPN class composed of 8 functions. NPN equivalent functions can be implemented with
the same circuit plus some inverters (that can be used to negate the inputs and outputs, if
necessary). This way it is possible to use a smaller library composed of one representative
gate for each NPN class plus one inverter cell.

Fig. 6. Combinations of all 2 variable functions. There are 222 total combinations.

Fig. 7. Identifying all P classes. Only permutations on input variables allowed (to be
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equivalent).

Fig. 8. Identifying all NPN classes. Permutations and negations on input variables
allowed and only negation on output allowed (to be equivalent).

Data structure used for AIG representation:
A simple AIG data structure allows quick and cheap structural hashing among AIG

nodes. Two AIG nodes with the same inputs under the same complementation conditions
are merged (something like the reduction rule in ROBDD). Unlike ROBDD, however AIG
representation is not canonical even when structural hashing is applied.

Fig. 9. Enumerating Structural hashing. AIGs for function ¯acd+b̄c̄d (a) without structural
hashing (b) with structural hashing

Structural Hashing: Structural hashing applied during AIG construction propagates
constants and ensures that each node is structurally unique. Complemented edges: Ac-
cordingly AIGs are stored in a compact form. AIGs represent inverters as attributes on
edges and therefore don’t require extra memory. Regularity: As a result of regularity,
memory management of an AIG package can be done by a simple customized memory
manager which uses fixed amount of memory for each node (thanks to the fixed number
of inputs to each node). By allocating memory for nodes in a topological order, we can
optimize AIG traversal which is repeatedly performed in many logic synthesis algorithms,
in the same order. AIGs can also be used in verification applications, such as equiva-
lence checking and even model checking. For instance, checking if two given AIGs under
comparison are functionally equivalent can be reduced to a SAT checking by adding an
XNOR (XOR) gate which can be expressed in terms of AND2 and INV gates with its two
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inputs fed in by the outputs of the two AIGs. The two AIGs are equivalent if and only if
the output of the XNOR (or XOR) gate is unsatisfiable. When it comes to synthesis, AIGs
are used in multilevel logic minimization and technology mapping. It is used as a unifying
data structure for both logic synthesis and verification. A new binary format called AIGER
was recently proposed to enable compact representation of the AIGs in files and memory.
With memory requirements of about three bytes for AIG node, AIGER has become a stan-
dard representation for circuit based problems in SAT competitions and Hardware model
checking competitions organized annually as a part of International conference on theory
and applications of satisfiability theory and International conference on CAV.

Alan Mishchenko, et al have proposed new technology independent combinational
logic synthesis flow using fast local transformations of And-Inverter-Graphs. The flow im-
proves on the traditional logic synthesis by addressing the above difficulties, advantages
are as follows:

1. While still being heuristic and suboptimal, the new algorithm does not require as
much hand-tuning and trial and error.

2. Improvements in the complexity of the logic are measured by AIG nodes and levels,
is in better correspondence with both standard-cell and FPGA mappers, which use AIGs
or similar data structures as subject graphs.

3. It is much simpler. A robust implementation reported in Alan’s paper took a few
person-weeks to implement.

4. It is orders of magnitude faster than the traditional flow, even when compared with its
most rugged and robust versions, while the quality is comparable or better when measured
by the delay and area of the network after technology mapping.

AIG rewriting is local; however, rewriting is very fast and can be applied to the network
many times. For example, performing ten rewriting passes over a typical network is still
at least an order of magnitude faster than running the resource-aware implementation of
the traditional flow in MVSIS. By applying rewriting many times, the scope of changes is
no longer local. The result is that the cumulative effect of several rewriting passes is often
superior to traditional synthesis in terms of quality.

4 ALGORITHM

It is a Fast greedy algorithm.
The idea is to iteratively select AIG subgraphs rooted at a node and replacing them

with smaller pre-computed subgraphs, while preserving the functionality of the root node.
The following steps are followed.

-> For the purpose of 4-input AIG rewriting, all 4-feasible cuts of the nodes are enu-
merated using the procedure described above.

-> For each cut, the boolean function is computed and its NPN-class is determined by
hash-table lookup.

-> Fast manipulation of 4-variable functions is achieved by representing them using
truth tables stored as 16-bit bit-strings.

As per [3], although there are 222 NPN equivalence classes of 4-variable functions,
out of those, only about 100 appear more than once as functions of 4-feasible cuts in the
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numerous benchmarks, and only about 40 of these have been found experimentally to
lead to improvements in rewriting.

Pseudocode:
Rewriting(network AIG, hash table PrecomputedStructures, bool UseZeroCost)
{

for each node N in the AIG in the topological order{
for each 4-input cut C of node N computed using cut enumeration{

F=Boolean function of N in terms of the leaves C
PossibleStructures=HashTableLookup(PrecomputedStructures, F);
//find the best logic structure for rewriting
BestS = NULL; BestGain=-1;
for each structure S in PossibleStructures{

NodesSaved=DereferenceNode(AIG, N);
NodesAdded=ReferenceNode(AIG, S);
Gain = NodesSaved - NodesAdded;
Dereference(AIG,S); Reference(AIG,N);
if (Gain > 0 || (Gain = 0 && UseZeroCost))

if (BestS = NULL || BestGain < Gain)
BestS = S;BestGain = Gain;

}
if (BestS == NULL) continue;
//use the best logic structure to update the netlist
NodesSaved = DereferenceNode(AIG,N);
NodesAdded = ReferenceNode(AIG,S);
assert (BestGain = NodesSaved - NodesAdded);

}
}

}

5 RESULTS

The results were as follows:
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Input AIG:

Output AIG:

Input AIG:
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Output AIG:

Input AIG:

Output AIG:
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Improvement using the current AIG rewriting implementation:

S.no No. of and gates before rewriting After rewriting
1. 4 3
2. 3 2
3. 3 2

A quick test on AIGER benchmarks has not showed much improvement in rewriting the
BEEM benchmark AIGER files. This may be due to the fact that only 40 NPN classes have
found experimentally to lead to improvements in rewriting. The structural rewriting that i
have implemented does not exhaustively cover all the NPN equivalence classes, rather
covers some structures. The absence of rewriting for most of these structures in the
implementation should be the reason for its poor performance on benchmarks. However,
in future a hash table look up implementation technique (pre-computed structures stored
at one place) attempting rewriting for most of these structures can be made to achieve
better results.
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